Deep Learning with Limited Data: Organ Segmentation Performance by U-Net
نویسندگان
چکیده
منابع مشابه
Road Extraction by Deep Residual U-Net
Road extraction from aerial images has been a hot research topic in the field of remote sensing image analysis. In this letter, a semantic segmentation neural network which combines the strengths of residual learning and U-Net is proposed for road area extraction. The network is built with residual units and has similar architecture to that of U-Net. The benefits of this model is two-fold: firs...
متن کامل3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation
This paper introduces a network for volumetric segmentation that learns from sparsely annotated volumetric images. We outline two attractive use cases of this method: (1) In a semi-automated setup, the user annotates some slices in the volume to be segmented. The network learns from these sparse annotations and provides a dense 3D segmentation. (2) In a fully-automated setup, we assume that a r...
متن کاملDeep Learning Methods for Classification with Limited Training Data
The human brain has an inherent ability to learn to react to something with just one past experience. The quest for Artificial Intelligence has brought us to the situation where machines simulating the abilities of the human brain are being developed. In this context, the a new flavour of the evergreen classification problem, that is, to classify data having seen few training instances becomes ...
متن کاملRegularizing Prediction Entropy Enhances Deep Learning with Limited Data
Many supervised learning problems require learning with small amounts of training data, since constructing large training datasets could be impractical due to cost, labor, or unavailability of data. For such tasks, constructing deep learning approaches that generalize to new data is difficult. In this paper, we demonstrate the effectiveness of using entropy as a regularizer on image classificat...
متن کاملAutomatic segmentation of glioma tumors from BraTS 2018 challenge dataset using a 2D U-Net network
Background: Glioma is the most common primary brain tumor, and early detection of tumors is important in the treatment planning for the patient. The precise segmentation of the tumor and intratumoral areas on the MRI by a radiologist is the first step in the diagnosis, which, in addition to the consuming time, can also receive different diagnoses from different physicians. The aim of this study...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronics
سال: 2020
ISSN: 2079-9292
DOI: 10.3390/electronics9081199